

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around Grand Lake through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources.

According to the SWAP report, our water system had a susceptibility rating of medium. If you would like to review the SWAP report, please feel free to contact our office during regular office hours.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the second and fourth Monday of each month at 7:00 p.m. in Council Chambers, located on the second floor of the City Administration Building, 225 North Main Street, Celina.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious ■ health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. A list of laboratories certified in the State of Ohio to test for lead may be found at http://www.epa.ohio.gov/ddagw or by calling (614) 644-2752. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/ safewater/lead.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call T. Mike Sudman Jr., Superintendent of Water and Distribution, at (419) 586-2270. Additional information on water-related topics, such as our backflow prevention program and water rates, is on the web at www.celinaohio.org, City Government, Utilities & Utility Rates.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or

through the ground, it dissolves naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

We remain vigilant in

delivering the best-quality

drinking water

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses:

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

The Celina Utilities Water Treatment Plant receives water from Grand Lake, which is fed entirely by agricultural and residential runoff from a 190-square-mile watershed. The principal streams and storage areas of the Grand Lake Watershed are Upper Beaver Creek, Grass Creek, Coldwater Creek, Burntwood Creek, and Grand Lake. To learn more about our watershed, contact the Grand Lake Watershed coordinator at the Mercer County Soil and Water Office in Celina at (419) 586-2548.

A source water assessment has been performed for our area to provide baseline data about the quality of water before it is treated and distributed to our customers. This is important because it identifies the origins of contaminants within our area and indicates the susceptibility of our water system to such contaminants. For the purposes of source water assessments, all surface waters

in Ohio are considered to be susceptible to contamination. By their nature, surface waters are readily accessible and can be contaminated by chemicals and pathogens that may rapidly arrive at the public drinking water intake with little warning or time to prepare. The City of Celina's drinking water source protection area

contains potential contaminant sources such as agriculture, home construction, industrial and commercial businesses, septic systems, wastewater treatment plants, airports, landfills, roadways, and railways.

The City of Celina's public water system treats the water to meet drinking-water-quality standards, but no single treatment technique can address all potential contaminants. Implementing measures to protect Grand Lake can further decrease the potential for water quality impacts. More detailed information is provided in the City of Celina's Drinking Water report, which can be obtained by calling T. Mike Sudman Jr., Superintendent of Water and Distribution, at (419) 586-2270.

Water Conservation Tips

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Table Talk

Cet the most out of the Testing Results data table with this simple suggestion. In less than a minute, you will know all there is to know about your water:

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL, SMCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance.

Other Table Information Worth Noting

Verify that there were no violations of the state and/or federal standards in the Violation column. If there was a violation, you will see a detailed description of the event in this report.

If there is an ND or a less-than symbol (<), that means that the substance was not detected (i.e., below the detectable limits of the testing equipment).

The Range column displays the lowest and highest sample readings. If there is an NA showing, that means only a single sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

BY THE NUMBERS

The number of gallons of water produced daily by public water systems in the U.S.

The number of miles of drinking water distribution mains in the U.S.

The amount of money spent annually on maintaining the public water infrastructure in the U.S.

The number of Americans who receive water from a public water system.

The age in years of the world's oldest water found in a mine at a depth of nearly two miles.

BILLION

151 The number of active public water systems in the U.S. THOUSAND

The number of highly trained and licensed water professionals serving in the U.S.

THOUSANI

The number of federally regulated contaminants tested for in drinking water.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the fourth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water in order to determine if U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

Note that we have a current, unconditioned license to operate our water system.

REGULATED SUBSTANCES										
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED		MCL [MRDL]		MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	ı VIOLATION	TYPICAL SOURCE
Chlorine (ppm)		20	19	[-	4]	[4]	2.14	1.80-2.5	2 No	Water additive used to control microbes
Haloacetic Acids [HAAs] (ppb)		20	19	60		NA	7.4	4.1–18.	4 No	By-product of drinking water disinfection
Nitrate (ppm)		2019		10		10	0.76	0.10–2.1	1 No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Total Organic Carbon [TOC] (ppm)		20	2019		TT^{1}		1.35	1.00-2.4	0 No	Naturally present in the environment
TTHMs [Total Trihalomethanes] (ppb)		20	19	8	0^2	NA	27.2	13.1–60	9 No	By-product of drinking water disinfection
Turbidity ³ (NTU)		20	2019		TT		0.23	0.05-0.2	3 No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)		20			TT = 95% of samples meet the limit		100	NA	No	Soil runoff
Tap water samples were collected for lead and copper analyses from sample sites throughout the community 4										
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED MCLG (90TH %ILE)				TES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2019	1.3	1.3	0.10		< 0.05–4.52		1/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4)										
SUBSTANCE (UNIT OF MEASURE)				YEAR AMOU SAMPLED DETEC				TYPICAL SOURCE		
Bromochloroacetic Acid (ppb)			2	2019 2.4		2	.09-3.40	Corrosion of household plumbing systems; Erosion of natural deposits		
Bromodichloroacetic Acid (ppb)			2	2019 0.		0.0	671–0.912	Corrosion of household plumbing systems; Erosion of natural deposits		
Chlorodibromoacetic Acid (ppb)			2	2019 0.39		1 0.3	330-0.441	Corrosion o	Corrosion of household plumbing systems; Erosion of natural depo	
Dibromoacetic Acid (ppb)			2	2019 1		1	.04–1.75	Corrosion of household plumbing systems; Erosion of natural deposits		
Dichloroacetic Acid (ppb)			2	2019 3.7		3	.33–5.12	Corrosion of household plumbing systems; Erosion of natural deposits		
Trichloroacetic Acid (ppb)			2019		1.04	0	.77–1.21	Corrosion of household plumbing systems; Erosion of natural deposits		

- ¹The value reported under Amount Detected for TOC is the lowest ratio of the percentage of TOC actually removed to the percentage of TOC required to be removed. A value of greater than one indicates that the water system is in compliance with TOC removal requirements. A value of less than one indicates a violation of the TOC removal requirements.
- ² Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer.
- ³Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.
- ⁴Lead was a non-detect at the 90th-percentile; however, there was one lead sample that was detected above the AL at Site LC247-790: 20.23 ppb.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90 percent of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.